sábado, 24 de septiembre de 2011

interuptores de corte al vacio


El corte de una corriente en vacío se considera que constituye la tecnología ideal de corte en media tensión. Unas excelentes prestaciones de maniobra combinadas con la más alta fiabilidad así como un diseño compacto hacen posible obtener las soluciones más económicas para el diseño de aparamenta eléctrica.

Resumen de ventajas de los tubos de corte en vacío: 
  • Excelentes prestaciones de maniobra junto con prolongadas vidas útiles eléctrica y mecánica
  • Recorrido del contacto y masa móvil limitados
  • Baja resistencia de contacto constante (sin oxidación)
  • Familia de tubos de corte en vacío de aplicación universal
  • Tecnología de maniobra eléctrica respetuosa con el medio ambiente
  • Exentos de mantenimiento de por vida
  • Calidad y fiabilidad elevadas


interuptores de corte al aire


Los interruptores termomagnéticos corte al aire son la mejor opción de protección de las instalaciones eléctricas en situaciones de sobrecarga y cortocircuito. Con aplicación flexible y una capacidad de comunicación integrada, cumplen con los requisitos más estrictos referente a la operación y el monitoreo de los procesos de red, conectados a los sistemas de control electrónicos.
  • Caracteristicas:
    • Interruptor más pequeño del mercado en el rango de potencia de 5000A a 6300A.
    • Sus modelos que se identifican por su diseño y modo de operación idéntica, (ya sea en sus versiones de montaje fijo o extraíble) además de poseer una serie de accesorios similares.
    • Fácil planificación, montaje y reacondicionamiento, gracias a su diseño modular de sólo 3 tamaños, pocos componentes y accesorios uniformes.

Interruptores corte al aire




 INTERRUPTORES DE CORTE AL AIRE 3, 4 POLOS, HASTA 3200 A, 65 KA EJECUCIÓN FIJA
  
 INTERRUPTORES DE CORTE AL AIRE 3, 4 POLOS, HASTA 3200 A, 65 KA EJECUCIÓN EXTRAIBLE

viernes, 23 de septiembre de 2011

puesta a tierra


Añadir leyenda

El hilo de tierra, también denominado toma de conexión a tierrapuesta a tierrapozo a tierrapolo a tierraconexión a tierraconexión de puesta a tierra o simplemente tierra, se emplea en las instalaciones eléctricas para evitar el paso de corriente al usuario por un fallo del aislamiento de los conductores activos.
La puesta a tierra es una unión de todos los elementos metálicos que, mediante cables de sección suficiente entre las partes de una instalación y un conjunto de electrodos, permite la desviación de corrientes de falta o de las descargas de tipo atmosférico, y consigue que no se pueda dar una diferencia de potencial peligrosa en los edificios, instalaciones y superficie próxima al terreno.


Toma a tierra

La toma a tierra es un sistema de protección al usuario de los aparatos conectados a la red eléctrica. Consiste en una pieza metálica, conocida como pica o electrodo o jabalina, enterrada en suelo con poca resistencia y si es posible conectada también a las partes metálicas de la estructura de un edificio. Se conecta y distribuye por la instalación por medio de un cable de aislante de color verde y amarillo, que debe acompañar en todas sus derivaciones a los cables de tensión eléctrica, y debe llegar a través de los enchufes a cualquier aparato que disponga de partes metálicas que no estén suficientemente separadas de los elementos conductores de su interior.
Cualquier contacto directo o por humedades, en el interior del aparato eléctrico, que alcance sus partes metálicas con conexión a la toma a tierra encontrará por ella un camino de poca resistencia, evitando pasar al suelo a través del cuerpo del usuario que accidentalmente pueda tocar el aparato.
La protección total se consigue con el interruptor diferencial, que provoca la apertura de las conexiones eléctricas cuando detecta que hay una derivación hacia la tierra eléctrica en el interior de la instalación eléctrica que controla. Debe evitarse siempre enchufar un aparato dotado de clavija de enchufe con toma de tierra en un enchufe que no disponga de ella.

[editar]Líneas de alta tensión

Bornes de puesta a tierra.
En las líneas de alta tensión de la red de transporte de energía eléctrica el hilo de tierra se coloca en la parte superior de las torres de apoyo de los conductores y conectado eléctricamente a la estructura de éstas, que, a su vez, están dotadas de una toma de tierra como la descrita anteriormente. En este caso el hilo de tierra cubre una doble función: por una parte protege a las personas de una derivación accidental de los conductores de alta tensión, y por otra, al encontrarse más alto que los citados conductores, actúan como pararrayos, protegiendo al conjunto de las descargas atmosféricas, que de esta forma son derivadas a tierra causando el mínimo daño posible a las instalaciones eléctricas.

Conceptos de tierra y masa

Línea de enlace con tierra, bajo cimentación de la vivienda.
Los conceptos de tierra y masa son usados en los campos de la electricidad y electrónica.

[editar]Tierra

El término "tierra", como su nombre indica, se refiere alpotencial de la superficie de la Tierra.
El símbolo de la tierra en el diagrama de un circuito es: Electric ground symbol.png
Para hacer la conexión de este potencial de tierra a uncircuito eléctrico se usa un electrodo de tierra, que puede ser algo tan simple como una barra metálica (usualmente de cobre) anclada el suelo, a veces humedecida para una mejor conducción.
Es un concepto vinculado a la seguridad de las personas, porque éstas se hallan a su mismo potencial por estar pisando el suelo. Si cualquier aparato está a ese mismo potencial no habrá diferencia entre el aparato y la persona, por lo que no habrá descarga eléctrica peligrosa.
Por último hay que decir que el potencial de la tierra no siempre se puede considerar constante, especialmente en el caso de caída de rayos. Por ejemplo si cae un rayo, a una distancia de 1kilómetro del lugar en que cae, la diferencia de potencial entre dos puntos separados por 10 metrosserá de más de 150 V en ese instante.
Puesta a tierra de un apoyo eléctrico.

[editar]Masa

La definición clásica de masa (en inglés de Estados Unidos ground de donde viene la abreviación GND, earth en inglés de Reino Unido) es un punto que servirá como referencia de tensiones en un circuito (0 voltios). El problema de la anterior definición es que, en la práctica, esta tensión varía de un punto a otro, es decir, debido a la resistencia de los cables y a la corriente que pasa por ellos, habrá una diferencia de tensión entre un punto y otro cualquiera de un mismo cable.
Una definición más útil es que masa es la referencia de un conductor que es usado como retorno común de las corrientes.
El símbolo de la masa en el diagrama de un circuito es el siguiente (también es aceptable sin el rayado): Chassis ground symbol.png
En la mayoría de las aplicaciones la masa del equipo o sea el chasis, el soporte de los circuitos así como el valor 0 voltios deben, en principio, ir conectados a tierra. Por lo que muchas veces cuando se dice conexión a masa también significa conexión a tierra. En otras pocas ocasiones la masa y la tierra en un circuito no tienen porque tener la misma tensión. Incluso la forma de onda de la masa respecto a la tierra puede ser variable, como ocurre en un convertidor Buck.


]Elementos que forman una puesta a tierra

A los elementos que forman el conjunto de una puesta a tierra los podemos clasificar de la siguiente forma:
  • Tierra: Necesitamos un terreno que será capaz de disipar las energías que pueda recibir.
  • Toma de tierra: Esta es la instalación de conexión a tierra, consta de las siguientes partes:
    • Electrodos o picas (también llamados jabalinas): Partes metálicas enterradas.
    • Línea de enlace con tierra: Conductor conectado a los electrodos.
    • Bornes de puesta a tierra: conexión entre la línea de enlace y los distintos conductores de protección.
    • Conductores de protección: unen los distintos puntos de la instalación con la línea de enlace.

[editar]Tipos de tierras

El sistema a tierra se divide en tres, diferenciándolos de la siguiente manera.

[editar]Sistema a tierra de corriente alterna

Es el más común, y que la podemos encontrar en edificios, hogares, producida por la diferencia de voltaje o corriente que tienen los circuitos eléctricos que trabajan con este voltaje alterno.

[]Ejemplos

  • Duchas eléctricas.
  • Refrigeradores.
  • Transformadores.

[]Sistema a tierra de corriente directa

Esta la encontramos en toda la infinidad de equipos electrónicos que existen, y de igual forma se produce por la decencia de voltajes o corrientes en estos circuitos.

[]Ejemplo

  • Tarjetas electrónicas, que existen en computadores, videojuegos, PLC (Controladores Lógicos Programables), sistemas HMI (Interfaz Humano Máquina).]

rSistema a tierra electrostáticas

Este tipo de tierra es muy peculiar debido a que lo encontramos específicamente en tanques de almacenamiento, transporte o tratamiento, se produce por la interacción del fluido (cargas eléctricas + ó -) y con su contenedor (cargas eléctricas + ó -) por lo general carga (-) en el tanque.

[]Ejemplo

  • Tanques para almacenar o tratar crudo, combustibles, gases, sustancias químicas.
El propósito de separar estos tres tipos, es para reducir al mínimo los daños, tanto físicos como materiales, y con ello las pérdidas económicas, esta independización de las tierras, se aplican más en el sector industrial, en los tableros de control que monitorean, supervisan los distintos procesos que involucran mantener operativa una industria.

tableros de distribucion


Campos de Aplicación

Los Tableros de Distribución de Baja Tensión son aptos para su utilización en las Sub-estaciones principales, secundarias y en lugares donde se desee tener un grupo de interruptores con relés de sobrecargas y cortocircuitos; destinados a proteger y alimentar a las cargas eléctricas.

Los Tableros de distribución constituyen una parte inherente a toda red eléctrica y se fabrican para conducir desde algunos pocos amperios hasta el orden de 4000Amp, así como para soportar los niveles de corrientes de cortocircuito y los niveles de tensión de la red eléctrica.

Los interruptores pueden ser del tipo bastidor abierto, en caja moldeada o tipo miniatura (riel DIN) y se pueden equipar con accesorios para mando local y a distancia. Existe una amplia variedad de equipos que pueden ser instalados en estos Tableros.

Se fabrican para instalación interior bajo techo o para instalación a la intemperie.

Características Constructivas

Son modulares, autosoportados o murales, fabricadas con estructuras de plancha de fierro LAF de hasta 3mm, puertas, techo y tapas.
El grado de protección estándar es IP20 y se pueden fabricar hasta con un grado de protección IP55 (protegido contra el polvo y contra chorros de agua en cualquier dirección.
Todas las superficies metálicas son pintadas con dos capas de pintura de base anticorrosiva y dos capas de pintura de acabado color gris RAL7000 o el color especificado por el usuario. Inmediatamente antes del pintado, las superficies metálicas
son sometidas a un proceso de arenado comercial.
La estructura está formada por columnas y travesaños soldados entre sí (también se puede suministrar con estructuras empernadas) para proporcionar un alto grado de robustez mecánica.
Las estructuras y la soportería es completamente modular, permitiendo añadir nuevas estructuras hacia los costados para ampliación futura.
Las tapas laterales, posteriores y el piso son desmontables. El frente dispone de puerta frontal con rejillas de ventilación y/o con ventiladores; dependiendo de la cantidad de calor que es necesario disipar.

Cada puerta dispone de bisagras robustas y cerraduras tipo manija con llave que proporcionan hasta tres puntos de contacto con la estructura del Tablero.

La ubicación de los equipos internos se efectúan de tal manera de brindar la mayor facilidad posible para la instalación y mantenimiento; así como para proporcionar la mayor seguridad para los operadores y las instalaciones y para brindar un alto grado de continuidad de servicio.

Todas las partes metálicas son conectadas a una barra de tierra firmemente empernada a la estructura de la Celda




CENTROS DE CARGA Y TABLEROS DE DISTRIBUCIÓN

Antecedentes y conceptos básicos

El origen de los tableros y centros de carga fue como consecuencia de las siguientes necesidades:
  • Dividir grandes sistemas eléctricos en varios circuitos para reducir calibres de conductores.
  • Tener medios de conexión y de protección para cada circuito eléctrico de un sistema.
  • Localizar en un solo lugar los dispositivos mencionados en el punto anterior.

Circuito alimentador. Refiriéndonos a tableros y centros de carga, el circuito alimentador o línea de alimentación será aquel circuito que proporcione la energía eléctrica al tablero.

Circuito derivado. Se da ese nombre a cada uno de los que alimentan el tablero a través de cada uno de sus interruptores, los cuales también reciben el nombre de derivados.

Fases, hilos y número de polos. Cuando a un tablero lo alimenta una línea de corriente o dos, se dice que es de una fase, siendo en estos dos casos absolutamente necesaria la conexión del hilo neutro.
Cuando al tablero llegan las tres líneas de corriente, se dice que es de tres fases.
El número de hilos en el tablero queda definido por la suma de los cables de línea y neutro que lo alimentan. Se tienen las siguientes combinaciones:
  • Una fase, tres hilos.
  • Tres fases, tres hilos.
  • Tres fases, cuatro hilos






cuchillas desconectadoras


Cuchillas desconectadoras

Las cuchillas desconectadoras (llamados también Seccionadores) son interruptores de unasubestación o circuitos eléctricos que protegen a una subestación de cargas eléctricas demasiado elevadas. Son muy utilizadas en las centrales de transformación de energía eléctrica de cada ciudad. Consta de las siguientes partes:
1. Contacto fijo. Diseñado para trabajo rudo, con recubrimiento de plata.
2. Multicontacto móvil. Localizado en el extremo de las cuchillas, con recubrimiento de plata y muelles de respaldo que proporcionan cuatro puntos de contacto independientes para óptimo comportamiento y presión de contacto.
3. Cámara interruptiva. Asegura la interrupción sin arco externo. Las levas de las cuchillas y de la cámara interruptiva están diseñadas para eliminar cualquier posibilidad de flameo externo.
4. Cuchillas. Fabricadas con doble solera de cobre. La forma de su ensamble proporciona una mayor rigidez y alineación permanente, para asegurar una operación confiable.
5. Contacto de bisagra. Sus botones de contacto troquelado y plateados en la cara interna de las cuchillas, en unión con un gozne plateado giratorio y un resorte de presión de acero inoxidable, conforman un diseño que permite combinar óptimamente la presión de contacto, evitando puntos calientes pero facilitando la operación y estabilidad de las cuchillas.
6. Aisladores tipo estación. De porcelana, dependiendo del tipo de seccionador varía el número de campanas.
7. Base acanalada. De acero galvanizado de longitud variable, con varios agujeros y ranuras para instalarse en cualquier estructura.
8. Cojinete. De acero, con buje de bronce que proporciona una operación suave. No requiere mantenimiento y resiste la corrosión.
9. Mecanismo de operación. Permite una amplia selección de arreglos de montaje para diferentes estructuras.

La maniobra de operación con estas cuchillas implica abrir antes los interruptores que las cuchillas en el caso de desconexión. Y cerrar antes las cuchillas y después los interruptores en el caso de conexión.



fusibles


Añadir leyenda





El Fusible

El fusible es dispositivo utilizado para proteger dispositivos eléctricos y electrónicos
El fusible permite el paso de la corriente mientras ésta no supere un valor establecido. En la figura se ve un fusible encapsulado de vidrio
Fusible con encapsulado de vidrio - Electrónica UnicromSi el valor de la corriente que pasa, es superior a éste, el fusible se derrite, se abre el circuito y no pasa corriente.
Si esto no sucediera, el equipo que se alimenta se puede recalentar por consumoexcesivo de corriente: (un corto circuito) y causar hasta un incendio.
El fusible normalmente se coloca entre la fuente de alimentación y el circuito a alimentar. En equipos eléctricos o electrónicos comerciales, el fusible está colocado dentro de éste.
El fusible está constituido por una lámina o hilo metálico que se funde con el calor producido por el paso de la corriente.
Es una practica común reemplazar los fusibles, sin saber el motivo por el cual este se "quemó", y muchas veces el reemplazo es por un fusible de valor inadecuado.




los fusibles deben de tener la capacidad de conducir una corrienteligeramente superior a la que supuestamente se de "quemar". Esto con el propósito de permitir picos de corriente que sonnormales en algunos equipos.
Los picos de corriente son valores de corriente ligeramente por encima del valor aceptable y que dura muy poco tiempo.
Hay equipos eléctricos que piden una gran cantidad de corrientecuando se encienden (se ponen en ON).
Si se pusiera un fusible que permita el paso de esta corriente, permitiría también el paso de corrientes causadas por fallas "normales" que harían subir la corriente por encima de lo normal. En otras palabras: el circuito no queda protegido.
Utilización de un fusible entre la fuente de alimentación y el equipo a alimentar  -  Electrónica Unicrom
Un caso es el de los motores eléctricos, que en el arranque consumen una cantidad decorriente bastante mayor a la que consumen en funcionamiento estable.
Para resolver este problema hay fusibles especiales que permiten, por un corto período de tiempo (ejemplo: 10 milisegundos), dejar pasar una corriente hasta 10 veces mayor que la corriente normal.
Si después de pasado este tiempo la corriente sigue siendo grande, el fusible se "quema".
Cuando se queme un fusible, siempre hay que reemplazarlo por uno de las mismas características, sin excepciones, previa revisión del equipo en cuestión, para determinar la causa de que el fusible se haya quemado.

Tipos de fusibles:

Fusible de cartucho. Vista externa y composición interna  -  Electrónica Unicrom
Fusible desnudo: constituido por un hilo metálico (generalmente de plomo) que se funde por efecto del calor.
- Fusible encapsulado de vidrio: utilizado principalmente en equipos electrónicos.
- Fusible de tapón enroscable: pieza cilíndrica de porcelana o similar, sobre la cual se pone una camisa roscada que sirve para que sea introducido en el circuito. El alambre (fusible) se coloca internamente, se fija con tornillos y se protege con una tapa roscada
- Fusible de cartucho: Están constituidos por una base de material aislante, sobre la cual se fijan unos soportes metálicos que sirvan para introducir a presión el cartucho. Ver diagrama.
Algunos símbolos de fusibles se pueden ver a continuación:
Símbolos de  fusibles - Electrónica Unicrom


Definiciones

Características nominales: Términos generales para designar cada una de las magnitudes características que definen en conjunto las condiciones de funcionamiento para las que ha sido diseñado el dispositivo y a partir de las cuales se determinan las condiciones de ensayo.
Corriente presunta de un circuito: Corriente que fluiría en un circuito si el cortacircuito fuera reemplazado por una lámina de impedancia despreciable, sin ningún otro camino ni en el circuito ni en la fuente.
Corriente presunta de ruptura: La corriente presunta correpondiente al instante de iniciación del arco durante la operación de ruptura.
Capacidad de ruptura: Corriente presunta de ruptura que un fusible es capaz de interrumpir en las condiciones prescriptas.
Corriente de ruptura límite El valor máximo instantáneo alcanzado por la corriente durante la operación de ruptura del fusible, cuando opera en forma de evitar que la corriente alcance el valor máximo al que llegaría en ausencia del cortacircuito.
Tiempo de pre-arco: Lapso entre el comienzo de la circulación de una corriente suficiente como para fundir a los elementos fusibles y el aislante en que se inicia el arco.
Tiempo de operación: Suma del tiempo de pre-arco y el tiempo de arco.
Integral de Joule (I2 t): La integral del cuadrado de la corriente presunta de ruptura.
Tiempo virtual: I2 t dividido por el cuadrado de la corriente presunta de ruptura.
Tensión de restablecimiento: Tensión que aparece entre bornes de un cortacircuito después de la ruptura de la corriente.
Tensión de ruptura: Valor máximo de la tensión, expresado en valor de cresta, que aparece entre los bornes del cortacircuito durante la o

Clasificación

Los fusibles pueden clasificarse empleando diversas características constructivas u operativas, existiendo numerosos antecedentes con distintos criterios. Por ejemplo si se dividen en base a su propiedad de ser reutilizables, se pueden clasificar en:
  • Descartable
  • Renovable
  • Inteligente, se reutiliza solo la porción no usada

Tipos de Fusibles

Fusibles de pólvora de alta tensión en un poste en plena calle.
Tres fusibles de rosca para proteger la instalación eléctrica de una residencia.
Se pueden clasificar según su tamaño y en función de su clase de servicio.
Según su tamaño tenemos:
  • Cartuchos cilíndricos:
    • Tipo CI00, de 8,5 x 31,5 mm, para fusibles de 1 a 25 A.
    • Tipo CI0, de 10 x 38 mm, para fusibles de 2 a 32 A.
    • Tipo CI1, de 14 x 51 mm, para fusibles de 4 a 40 A.
    • Tipo CI2, de 22 x 58 mm, para fusibles de 10 a 100 A.
  • Cartucho fusible 14 x 51 mm, 25 A.
  • Fusibles tipo D:
    • Tamaño de 25 A, para fusibles de 2 a 25 A.
    • Tamaño de 63 A, para fusibles de 35 y 50 A.
    • Tamaño de 100 A, para fusibles de 80 y 100 A.
  • Fusible y portafusible tipo D.
  • Fusibles tipo D0:
    • Tipo D01, para fusibles de 2 a 16 A.
    • Tipo D02, para fusibles de 2 a 63 A.
    • Tipo D03, para fusibles de 80 y 100 A.
    • Fusible D02, 63 A.
  • Fusibles tipo de cuchillas o también llamados NH de alto poder de ruptura (APR):
    • Tipo CU0, para fusibles desde 50 hasta 1250 A.
    • Tipo CU1, para fusibles desde 160 hasta 250 A.
    • Tipo CU2, para fusibles desde 250 hasta 400 A.
    • Tipo CU3, para fusibles desde 500 y 630 A.
    • Tipo CU4, para fusibles desde 800 hasta 1250 A.
  • Fusible NH00 o de cuchillas, 40 A
Otra denominación de los fusibles de cuchillas o NH:
  • Tamaño 00 (000), 35 a 100 A
  • Tamaño 0 (00), 35 a 160 A
  • Tamaño 1, 80 a 250 A
  • Tamaño 2, 125 a 400 A
  • Tamaño 3, 315 a 630 A
  • Tamaño 4, 500 a 1000 A
  • Tamaño 4a, 500 a 1250 A
En cuanto a la clase de servicio los fusibles vienen designados mediante dos letras; la primera nos indica la función que va a desempeñar, la segunda el objeto a proteger:
Primera letra. Función.
  • Categoría “g” (general purpose fuses) fusibles de uso general.
  • Categoría “a” (accompanied fuses) fusibles de acompañamiento.
Segunda letra. Objeto a proteger.
  • Objeto “I”: Cables y conductores.
  • Objeto “M”: Aparatos de conexión.
  • Objeto “R”: Semiconductores.
  • Objeto “B”: Instalaciones de minería.
  • Objeto “Tr”: Transformadores.
La combinación de ambas letras nos da múltiples tipos de fusibles, pero tan solo pondré los más habituales o utilizados:
  • Tipo gF: Fusible de fusión rápida. Protege contra sobrecargas y cortocircuitos.
  • Tipo gT: Fusible de fusión lenta. Protege contra sobrecargas sostenidas y cortocircuitos.
  • Tipo gB: Fusibles para la protección de líneas muy largas.
  • Tipo aD: Fusibles de acompañamiento de disyuntor.
  • Tipo gG/gL: Norma CEI 269-1, 2, 2-1. Es un cartucho limitador de la corriente empleado fundamentalmente en la protección de circuitos sin puntas de corriente importantes, tales como circuitos de alumbrado, calefacción, etc.
  • Tipo gI: Fusible de uso general. Protege contra sobrecargas y cortocircuitos, suele utilizarse para la protección de líneas aunque se podría utilizar en la protección de motores.
  • Tipo gR: Semiconductores.
  • Tipo gII: Fusible de uso general con tiempo de fusión retardado.
  • Tipo aM: Fusibles de acompañamiento de motor, es decir, para protección de motores contra cortocircuitos y por tanto deberán ser protegido el motor contra sobrecargas con un dispositivo como podría ser el relé térmico.
En general todos los fusibles cuando se funde uno por la causa que sea el resto de los fusibles que no han fundido muy posiblemente hayan perdido las características de fábrica al ser atravesados por corrientes y tensiones que no son las nominales, es por eso que en un sistema trifásico cuando funde un fusible lo correcto es cambiar los tres así como en un sistema monofásico lo correcto es cambiar ambos fusibles cuando uno de ellos ha fundido.
Fusible NH con su maneta de extracción.
Al cambiar los fusibles NH utilizar siempre la maneta y NO utilizar los alicates universales para retirar estos fusibles y menos con tensión.
Los fusibles de cuchillas o los de cartucho pueden llevar percutor y/o indicador de fusión, el percutor es un dispositivo mecánico que funciona cuando funde el fusible que hace moverse un percutor que generalmente acciona un contacto que señaliza la fusión del fusible y/o actuar una alarma.
Fusible utilizado en instalaciones ferroviarias, el punto rojo que se ve arriba es el percutor que en caso de fundir sobresaldría, encima de este percutor se alojaría el contacto que acciona la señal de fusible fundido. Foto viatger.
El indicador de fusión es una especie de círculo que salta cuando el fusible ha fundido, el color indica el amperaje según la siguiente tabla:
Rosa = 2 A Marrón = 4 A Verde = 6 A Rojo = 10 A Negro = 13 A Gris = 16 A Azul = 20 A Amarillo = 25 A Negro = 32, 35 ó 40 A Blanco = 50 A Cobre = 63 A Plata = 80 A Rojo = 100 A
Existen muchos tipos de fusibles vamos a repasar los más importantes:
Fusibles cilíndricos de vidrio que se suelen utilizar como protectores en receptores como electrodomésticos, radios, fuentes de alimentación, centratilas detectoras de incendios, etc.
Fusibles vidrio. Cuando se cambian estos fusibles se deben sustituir por otro de las mismas características, no tan solo se debe mirar la tensión y amperaje que soporta además se debe tener en cuenta la letra que lleva antes del amperaje porque según cual sea la letra (F, FF, T, etc.) el fusible es más o menos rápido en su fusión.
Tabla fusibles de vidrio. Letras indicadoras del comportamiento a la fusión del fusible.
Fusibles para vehículos.
En los fusibles para vehículos normalmente viene indicado en el manual de entretenimiento del coche cuales son los amperajes que deben ir en cada circuito no obstante el amperaje se indica mediante un código de colores:
Marrón = 5 A Rojo = 10 A Azul = 15 A Amarillo = 20 A Incoloro = 25 A Verde = 30 A
Fusibles para semiconductores.
Fusible de expulsión para alta tensión.
Diferentes representaciones del fusible según diversas normas.
Fusibles HH de alto poder de ruptura (APR) para alta tensión.
Fusible de 10 A plano para modelo Metrópoli, aunque quedan aún instalados se tiende a su sustitución. Foto viatger.
Diversos tipos de fusibles utilizados en instalaciones ferroviarias. Foto viatger.
En mi experiencia profesional los fusibles que más he utilizado (o he cambiado) son los del Tipo gI , gG/gL, aM, NH y fusibles de vidrio, no obstante no es relevante porque según en el sector que uno/a trabaje utilizará más un tipo de fusibles que otros